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Abstract. Dynamic properties of a one-dimensional probabilistic cellular automaton are studied by Monte
Carlo simulation near a critical point which marks a second-order phase transition from an active state
to an effectively unique absorbing state. Values obtained for the dynamic critical exponents indicate that
the transition belongs to the universality class of directed percolation. Finally the model is compared with
a previously studied one to show that a difference in the nature of the absorbing states places them in
different universality classes.

PACS. 05.20.-y Statistical mechanics – 64.60.Cn Order-disorder transformations; statistical mechanics of
model systems – 05.45.+b Theory and models of chaotic systems

1 Introduction

Discrete models of nonequilibrium stochastic processes
form a class of interacting particle systems [1]. Of the
models studied with short range and translationally in-
variant interactions in space and time, the ones exhibiting
a continuous phase transition from an active steady state
to an absorbing state fall into two universality classes [2]:
(1) the class of directed percolation (DP),
(2) the class of parity conservation (PC).

Models with a unique absorbing state have been con-
jectured to belong to the DP class [3,4]. This is yet the
larger of the two classes and includes, for example, lat-
tice models of directed percolation in d+1 dimensions [5],
the contact process for an epidemic [6], Schlögl’s first and
second models of autocatalytic reactions [7], the Domany-
Kinzel automaton [8,9], a lattice version of reggeon field
theory [10] and branching annihilating random walks with
an odd number of offsprings [11]. The order parameter
is usually the density of ‘particles’ (occupied sites,kinks).
The models mentioned above are one-component systems
and therefore the order parameter is scalar, a requirement
of the DP-conjecture [3,4]. The DP-conjecture was gener-
alised to include multicomponent systems such as the ZGB
model of heterogeneous catalysis [12–14] and interacting
dimer-trimer models [15]. The class of DP was shown to
further include systems with an infinite number of absorb-
ing states [16]; these absorbing states are frozen configura-
tions characterised by unique statistical properties, a lack
of long range correlations and a general lack of symmetry
among them.
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On the other hand, models with degenerate, mutually
symmetric absorbing states are believed to belong to the
parity-conserving class where the number of ‘particles’ are
conserved modulo 2. Prominent examples are the proba-
bilistic cellular automaton models A and B of [17,18], an
interacting monomer-dimer model [19] and branching an-
nihilating random walks (BAW) with an even number of
offsprings [20]. According to one point of view [2,18] the
mechanism that puts these models in a class different from
that of DP is the conservation of particle number modulo
2. This point was proved for BAW with an even number
of offsprings: introduction of spontaneous annihilation of
particles in the model destroyed the conservation of their
number modulo 2 and the critical behaviour of this mod-
ified model was observed to be in the class of DP [21].
According to a second point of view the critical behaviour
of the models in the PC class is due to the symmetry
among its absorbing states [22,23]. To prove the point
the interacting monomer-dimer model of [19], in the pres-
ence of a weak parity-conserving field that destroyed the
symmetry among the absorbing states, was shown to ex-
hibit critical behaviour in the DP class [22]. This view
was further emphasized in the generalised versions of the
Domany-Kinzel automaton and the contact process [23].
In these generalised models there was no explicit parity-
conservation law and with two symmetric absorbing states
the critical behaviour was in the PC class. In the presence
of a symmetry breaking field the critical behaviour of these
models changed to the DP class. However in the case of the
probabilistic cellular automata of [17,18] both the conser-
vation of particle number modulo 2 and mutual symmetry
among the absorbing states are present and therefore it is
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not apparent which of these two features is responsible for
the models to be in the PC class.

In this paper I shall study, using time-dependent
Monte Carlo simulations, the dynamic critical properties
of a one-dimensional probabilistic cellular automaton [25]
which has three absorbing states and exhibits a phase
transition from an active state to one of them only. The
simulations provide values for the critical point (more ac-
curate than previous estimates [25,27]) and the dynamic
critical exponents that decide the universality class to
which the phase transition belongs.

2 The model

The probabilistic cellular automaton studied here is ‘el-
ementary’ (in the sense of Wolfram [24]) with two states
per site and translationally invariant nearest neighbour in-
teractions. The probabilistic behaviour enters the model
through two mutually symmetric components of the evo-
lution rule (like specific noise added to a otherwise deter-
ministic system), the rest of the rule components being
deterministic in nature.

Formally the model [25] is defined as a line of sites
with a binary variable xi ∈ {0, 1} assigned to each site
i. A site is said to be occupied if xi = 1 and unoccupied

otherwise. Starting from a given configuration {x(0)
i } the

system evolves by parallel update of the variable xi at
all lattice sites following a local rule of evolution. With
nearest neighbour interactions the evolution rule is defined

by a set of eight components [x
(t)
i−1, x

(t)
i , x

(t)
i+1] 7→ x

(t+1)
i

corresponding to 23 distinct three-site neighbourhoods:

t :

t+ 1 :

111

0

110

0

011

0

101

0

010

1

100 001︸ ︷︷ ︸
1 with probability p
0 with probability 1− p.

000

0
(1)

The evolution rule (1) thus follows, according to Wolfram’s
nomenclature scheme [24], ‘elementary’ rule 4 with prob-
ability 1− p and ‘elementary’ rule 22 with probability p.

Clearly, the components of the evolution rule are of
two kinds: (1) active components, where the central site
changes its value, and (2) passive components, where the
value of the central site remains unchanged. The dynamic
evolution of the system is due to the active components.
This involves two opposing processes:
(a) Annihilation of adjacent occupied sites (multi-
‘particle’ annihilation) due to the rule components 111 7→
0, 110 7→ 0, 011 7→ 0 prevents the survival of occupied
pairs of nearest neighbours; this is a deterministic pro-
cess.
(b) Creation of an occupied site (100 7→ 1, 001 7→ 1) re-
quires an unoccupied site to have exactly one occupied
neighbour; this process of creation occurs only with a

probability p. The multi-‘particle’ annihilation and cre-
ation of ‘particles’ can, in effect, give rise to a diffusion
process − if a ‘particle’ at site i gets annihilated after cre-
ating another ‘particle’ at a neighbouring site i+ r, it has
effectively taken a step from i to i+ r.

The passive components determine the absorbing
states of the model1. Since there is no spontaneous cre-
ation of occupied sites (000 7→ 0) the ‘vacuum’ (all sites
unoccupied) is always an absorbing state:

Absorbing state I: xi = 0 for all i. (2)

Again, it is evident from the rule components 010 7→ 1 and
101 7→ 0 that an occupied site with unoccupied neighbours
remains occupied and vice versa. These features of the
evolution rule lead to two mutually symmetric absorbing
states:

Absorbing state II: xi =

{
0 for i = even,
1 for i = odd.

(3)

Absorbing state III: xi =

{
1 for i = even,
0 for i = odd.

(4)

The main point of interest in this paper is a phase tran-
sition exhibited by the model [25]. For p less than a criti-
cal value pc there exists three distinct steady states given
by the three absorbing states of the model. For all initial
states but two, it has been observed in computer simula-
tions [25] that the only steady state is the ‘vacuum’ (ab-
sorbing state I). The two cases of exception occur when
the initial state is either absorbing state II or absorbing
state III, which must also be respectively the steady states
of the system. Evolving from any other initial state the
mutually symmetric absorbing states II and III are never
reached. This can be understood by the fact that these
states are fixed points that repel − a damage introduced
in these two states by flipping only a single bit spreads
through the entire lattice and eventually the ‘vacuum’ is
reached. Above pc there is another steady state called the
‘active’ state with a constant non-zero density of occupied
sites. The active state is stable only on an infinite lattice;
for finite lattices it occurs as a metastable state that will
decay to the ‘vacuum’ if allowed to evolve for sufficiently
long time. On an infinite lattice, in the supercritical re-
gion (p > pc), all possible initial states other than the
three absorbing states evolve into the ‘active’ steady state.
The density of occupied sites ρ∞ in the steady state acts
as the order parameter for this phase transition − in the
supercritical region ρ∞ goes to zero continuously as p ap-
proaches pc [25]:

ρ∞ ∝ (p− pc)
β , p→ pc+, (5)

1 In the theory of Markov processes a set C of states is closed
if no state outside C can be reached from any state in C. A
single state forming a closed set is called absorbing [26].
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where β is the critical exponent for the order parame-
ter. For random initial states the model therefore makes
a continuous (second order) phase transition, at p = pc,
from an active state with ρ∞ > 0 to an effectively unique
absorbing state, the ‘vacuum’. Because of the conjecture
of [3,4] this phase transition is expected to belong to the
universality class of DP.

3 Dynamic properties at the critical point

The phase transition is characterised here by critical ex-
ponents describing the dynamic properties of the model
at the point of transition (the critical point pc). To do
so dynamic properties of the model are studied by Monte
Carlo simulations on a computer, only close to pc. While
the study of steady state properties require simulations
starting from disordered states, the dynamic properties
are studied using initial states with a single occupied site.
Following the evolution rule (1) an initial occupied site
grows into a cluster; the position of this initial occupied
site is called the ‘origin’ of the cluster. For each value of p,
104 clusters were simulated. Each cluster was allowed to
evolve for 5000 time steps, unless it had died out earlier.
Typical examples of evolution near the critical point are
shown in Figure 1.

The quantities measured are: (1) the survival probabil-
ity P (t), which gives the chance that there is at least one
occupied site after t time steps, (2) the average number of
occupied sites N(t) after t time steps, and (3) the mean
square radius R2(t) of the cluster (or, the mean square
displacement from the ‘origin’ of the cluster) after t time
steps. At the critical point p = pc, these quantities are ex-
pected to follow power-type scaling laws in the long-time
limit (t→∞):

P (t) ∝ t−δ,

N(t) ∝ tη, (6)

R2(t) ∝ tz ,

where δ, η and z are dynamic critical exponents. In the
case of N(t) the average is taken over all clusters including
those which have died out, while R2(t) is averaged over the
occupied sites in the surviving clusters only.

Results for the three quantities P (t), N(t) and R2(t),
obtained from computer simulations of the model (1),
are shown in Figure 2. On log-log plot curves in the
subcritical region bend downward while those in the su-
percritical region bend upward; at the critical point the
curves are expected, if the scaling laws (6) are true, to be
straight lines as t → ∞. It is obvious from Figure 2 that
0.75 < pc < 0.753. More precise estimates for pc and the
critical exponents are obtained by the method of effective
exponents [28]. Effective exponents δt, ηt and zt are de-
fined as the local slopes of the curves shown in Figure 2,
for example:

zt =
∆[logR2(t)]

∆[log t]
, (7)

t "

i !

(a)

t "

i !

(b)

Fig. 1. Typical examples of evolution from a single occupied
site following rule (1): (a) a case in the subcritical region (p =
0.74) and (b) a case in the supercritical region (p = 0.76). The
first 200 time-steps in the evolution process are shown.

which are measured by using the formula:

zt =
log[R2(t)/R2(t/m)]

logm
, (8)

and similar expressions for − δt and ηt. Results for m = 10
are shown in Figure 3. Like the curves in Figure 2, curves
for p < pc bend downward while those for p > pc bend
upward.
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Fig. 2. Results for three dynamic properties from Monte Carlo simulations of the model: (a) survival probability, (b) average
number of occupied sites and (c) mean square radius of the evolving cluster. Each of the three panels contains five curves that
correspond to p = 0.753 (top), 0.752, 0.7515, 0.751, and 0.75 (bottom) respectively.

The critical exponents of the model appear as the asymp-
totic values of the corresponding effective exponents as
t → ∞. Figure 3 shows the effective exponents (as the
ordinate) plotted versus 1/t (as the abscissa) and the cor-
responding critical exponent is obtained as the intercept
of the curve for p = pc on the ordinate axis. Using this
method the following estimates for the critical characteris-
tics of the model were obtained from computer simulation
data:

pc = 0.7515± 0.0005 (9)

and

δ = 0.16± 0.01,

η = 0.32± 0.02, (10)

z = 1.27± 0.01.

The value of the critical point agrees closely with previous
estimates [25,27] and improves upon them. The values of
the critical exponents are also found to satisfy the scaling
relation [10]:

d z = 2η + 4δ, (11)

where d is the number of spatial dimensions of the system
(here d = 1).

Evolving from disordered initial states, the density of
occupied sites ρt was observed to follow the same dy-
namic scaling as the survival probability. In computer
simulations of [25] the exponent characterising the crit-
ically slow relaxation ρt ∝ t−α at p = pc was found to be
α ≈ 0.16 ≈ δ.

The values of all the three dynamic critical exponents
agree, within the limits of error, with the corresponding
values for DP in 1 + 1 dimensions [10,29,30]. In a pre-
vious work [27] the critical exponents ν⊥ and ν‖ for the
correlation length and correlation time respectively at this
particular phase transition, obtained by finite-size scaling
methods, were also found to belong to the DP class. How-
ever, the order parameter exponent β was observed to
disagree with the DP value [25]; this was an error arising
out of finite-size effects and fluctuations due to the small
sample size used for averaging. Since δ and ν‖ are already
in the class of DP, the exponent β, by virtue of the re-
lation β = δ ν‖ [10], must also agree with the directed
percolation value for 1 + 1 dimensions.
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Fig. 3. The effective exponents measured as the local slopes of the curves shown in Figure 2. For large t, data have been
averaged over many time-steps in order to suppress fluctuations.

The last result is concerned with the fractal dimension
of the clusters in the single space dimension at p = pc. The
average number of occupied sites per surviving cluster is
given by Ns(t) = N(t) / P (t). The fractal dimension dF of
the clusters at fixed time is defined by:

Ns ∝ R
dF . (12)

Following the definition of the dynamic exponents (6) the
fractal dimension is expected to satisfy the relation:

dF z = 2(η + δ). (13)

Figure 4 shows a log-log plot of Ns versus R at p = pc.
The slope of the curve is given by:

dF = 0.74± 0.02, (14)

which satisfies relation (13) within the limits of error.

4 Discussion

In this concluding section I shall compare the model de-
fined by (1) with another that has the same set of ab-
sorbing states and that belongs to a different university
class.

1

10

100

1 10 100 1000

NS

R

Fig. 4. The log-log plot of the average number of occupied sites
as a function of the root-mean-square radius of the clusters at
p = pc. The slope of the curve gives the fractal dimension of
the clusters at fixed time. The straight line drawn below the
curve is the graph of Ns = const. R0.74.
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The probabilistic cellular automaton (1) studied here
was found to have three absorbing states given by (2), (3)
and (4). For p < pc the ‘vacuum’ (absorbing state I) is the
only attractor of the model while the other two absorbing
states (II and III) are never reached from disordered ini-
tial states. Consequently the ‘vacuum’ appears, in effect,
to be the unique absorbing state in the subcritical region.
The dynamic critical exponents characterising the phase
transition in this model indicate that the transition be-
longs to the class of DP, in agreement with the conjecture
of [3,4].

On the other hand, the phase transition occurring in
model A of [17] belongs to the PC class. This model is yet
another one-dimensional elementary probabilistic cellular
automaton defined by the evolution rule:

t :

t+ 1 :

111

0

110 011︸ ︷︷ ︸
0 with probability p
1 with probability 1− p

101

0

010

1

100

1

001

1

000

0
· (15)

It is remarkable that the three absorbing states of this
model are exactly the same as those of model (1). How-
ever, contrary to their nature in model (1), the mutually
symmetric absorbing states II and III occur as attractors
of this model for p < pc while aborbing state I (the ‘vac-
uum’) is never reached from disordered initial states. It
appears that the contrast in the nature of the absorbing
states between the two models places them in different
universality classes. In that case the non-DP behaviour of
model (15) must be due to the degeneracy in the absorbing
state in the subcritical region, thus supporting the view
of [22,23].

I am grateful to Professor Bikas K. Chakrabarti for discus-
sions and for critically reading the manuscript. The work was
supported by CSIR, Government of India.
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